Research



Our research program targets the development of functional polymeric materials by creating family of porous organic polymers, membranes and supramolecular polymers to solve critical environmental problems  originating from green house emissions into the atmosphere with a particular emphasis on COcapture, separation & conversion, H2 storage as well as Li-ion batteries.






1) CO2 capture, separation and conversion: Specific materials of interest involves the development of (i) switchable gas separation membranes (ii) porous organic polymers (iii) metal organic frameworks. we also develop porous organic polymers incorporating macrocycles and shape-persistent organic cages in an effort to transfer their intrinsic properties into the final polymers to achieve complex separations.

CO2 Capture and Separation:

















Related Key Publications:


  • Lee, J.; Buyukcakir, O.; Kwon, T.-w; Coskun, A.* "Energy Band-Gap Engineering of Conjugated Microporous Polymers via Acidity-Dependent In-situ Cyclization," J. Am. Chem. Soc. 2018,  140, 10937-10940. pdf



  • Talapaneni, S. N.; Lee, J. H.; Je, S. H.; Buyukcakir, O.; Kwon, T.;  Polychronopoulou, K.; Choi, J. W.*; Coskun, A.* "Chemical Blowing Approach for Ultramicroporous Carbon Nitride Frameworks and Their Applications in Gas and Energy Storage," Adv. Funct. Mater.201727, 1604658pdf






  • Talapaneni, S. N.; Kim, D.; Barin, G.; Buyukcakir, O.; Je, S. H.; Coskun, A.* "Pillar[5]arene Based Conjugated Microporous Polymers for Propane/methane Separation Through Host-guest Complexation," Chem. Mater.201628, 4460–4466. pdf



  • Byun, Y.; Coskun, A.* “Bottom-up Approach for the Synthesis of a Three-Dimensional Nanoporous Graphene Nanoribbon Framework and Its Gas Sorption Properties, Chem. Mater.201527, 2576–2583. pdf



  • Patel, H. A.; Je, S. H.; Park, J.; Chen, D. P.; Jung, Y.; Yavuz, C. T.*; Coskun, A.* “Unprecedented High-Temperature CO2 Selectivity in N2-phobic Nanoporous Covalent Organic Polymers,” Nature Commun., 2013, 4, 1357. pdf  [Highlighted in the Chemistry World on January 17, 2013, C&EN News on January 21, 2013 and KAIST Breakthroughs Newsletter (Fall 2014)]

CO2 Capture and Conversion:


Related Key Publications


  • Kim, D.; Kim, D. W.; Buyukcakir, O.; Kim, M.-K.; Polychronopoulou, K.; Coskun, A.* "Highly Hydrophobic ZIF-8/carbon Nitride Foam with Hierarchical Porosity for Oil Capture and Chemical Fixation of CO2," Adv. Funct. Mater.20171700706pdf
  • Buyukcakir, O.; Je, S. H.; Talapaneni, S. N.; Kim, D.; Coskun, A.* "Charged Covalent Triazine Frameworks for CO2 Capture and Conversion," ACS Appl. Mater. Interfaces, 20179, 7209–7216. pdf
  • Buyukcakir, O.; Je, S.-H.; Choi, D. S.; Talapaneni, S. N.; Seo, Y.; Jung, Y.; Polychronopoulou, K.; Coskun, A.* Porous Cationic Polymers: The Impact of Counteranions and Charges on CO2 Capture and Conversion,” Chem. Commun.201652, 934937.


MOFs and Gas Separation Membranes:





2) Atmospheric water and oil capture: We are developing highly hydrophilic porous organic polymers to capture atmospheric water also to establish fundamental principles to realize high CO2 uptake capacity under humid conditions.




Related Key Publications

  • Byun, Y.; Je, S. H.; Talapaneni, S. N.; Coskun, A.* "Advances in Porous Organic Polymers for Efficient Water Capture," Chem. Eur. J.2019, DOI:10.1002/chem.201900940. pdf [Minireview]
  • Byun, Y.; Coskun, A.* "Epoxy-functionalized Porous Organic Polymers via Diels-Alder Cycloaddition Reaction for Atmospheric Water Capture," Angew. Chem. Int. Ed.201857, 3173–3177. pdf [Selected as a HOT paper] [Highlighted in Chemistry Views]
  • Kim, D.; Kim, D. W.; Buyukcakir, O.; Kim, M.-K.; Polychronopoulou, K.; Coskun, A.* "Highly Hydrophobic ZIF-8/carbon Nitride Foam with Hierarchical Porosity for Oil Capture and Chemical Fixation of CO2," Adv. Funct. Mater.20171700706pdf

3) Li-ion Batteries: In the area of Li-ion batteries, we aim to demonstrate the potential of supramolecular chemistry as a general strategy to solve capacity fading problem associated with new generation energy storage materials including (but not limited to), Silicon, Sulfur and Li-metal.



Related Key Publications
  • Kwon, T.-w; Choi, J. W.*; Coskun, A.* "Prospect for Supramolecular Chemistry in High-Energy-Density Rechargeable Batteries," Joule, 20194, DOI:10.1016/j.joule.2019.01.006. pdf [Perspective Article]
  • Kwon T.-w; Choi, J. W.*; Coskun, A.* "The Emerging Era of Supramolecular Polymeric Binders in Silicon Anodes," Chem. Soc. Rev.201847, 2145 - 2164.

Silicon anodes:

  • Jeong, Y. K.; Kwon, T.-W.; Lee, I.; Kim, T.-S.; Coskun, A.*; Choi, J. W.* Hyperbranched β-Cyclodextrin Polymer as an Effective Multidimensional Binder for Silicon Anodes in Lithium Rechargeable Batteries,” Nano Lett., 2014, 14, 864–870. pdf
  • Kwon, T.-W; Jeong, Y. K.; Lee, I.; Kim, T.-S; Choi, J. W.*; Coskun, A* “Systematic Molecular-Level Design of Binders Incorporating Meldrum`s Acid for Silicon Anodes in Lithium Rechargeable Batteries,” Adv. Mater.2014 26, 7979–7985. pdf
  • Jeong, Y. K.Kwon, T.-WLee, I.; Kim, T.-S; Coskun, A*, Choi, J. W.* “Millipede-inspired Structural Design Principles for High Performance Polysaccharide Binders in Silicon Anodes,” Energ. Environ. Sci, 20158, 1224–1230. pdf
  • Kwon, T.-W†; Jeong, Y. K.†; Deniz, E.; Erhan Deniz; AlQaradawi, S. Y.; Choi, J. W.*; Coskun, A.*“Dynamic Crosslinking of Polymeric Binders Based on Host-Guest Interactions for Silicon Anodes in Lithium Ion Batteries,” ACS Nano20159, 11317–11324. 
  • Choi, S.; Kwon, T.-w.Coskun, A.*; Choi, J. W.* "Highly Elastic Binders Integrating Polyrotaxanes for Silicon Microparticle Anodes in Lithium Ion Batteries," Science2017357, 279-283pdf

See excellent perspective article in Science by Jaegeon Ryu, Soojin Park at UNIST, Korea.



See the commentary in Science by Marc Lavine "A stretchy binder protects the silicon,"

See our highlight in Nature Reviews Materials by Alison Stoddart, "Lithium-ion batteries: Stress relief for silicon,"

See our highlight in Nature"Molecular pulleys ease the strain for lithium-ion batteries,"

See our highlight in Nature, News and Views by Matthew T. McDowell, "Materials science: Pulley protection in batteries,"

See our highlight in the C&EN News July 24, 2017 issue as "Polymer ‘pulleys’ could boost Li-ion battery performance," 

Selected among the most notable chemistry research advances in 2017 by C&EN News December 18, 2017 

Li metal anodes:


  • Yoo, D.-J; Elabd, A.; Choi, S.; Cho, Y.; Kim, J.; Lee, S. J.; Choi, S. H.; Kwon, T.-w; Char, K.; Kim, K. J.*; Coskun, A.*; Choi, J. W.* "Highly Elastic Polyrotaxane Binders for Mechanically Stable Lithium Hosts in Lithium Metal Batteries," Adv. Mater.2019Accepted.

Li-S batteries:

  • Talapaneni, S. N.†; Hwang, T. H.; Je, S. H.; Buyukcakir, O.; Choi, J. W.*; Coskun, A.* "Elemental Sulfur Mediated Facile Synthesis of a Covalent Triazine Framework for High Performance Lithium-Sulfur Batteries," Angew. Chem. Int. Ed., 2016, 55, 3106–3111pdf  [Selected as a Very Important Paper, VIP]
  • Je, S. H.; Hwang, T. H.; Talapaneni, S. N.; Buyukcakir, O.; Kim, H. J.; Yu, J.-S.; Woo, S. G.; Jang, M. C.; Son, B. K.; Coskun,  A.*; Choi, J. W.* "A Rational Sulfur Cathode Design for Lithium-Sulfur Batteries: Sulfur-embedded Benzoxazine Polymers," ACS Energy Lett.20161, 566–572.  pdf
  • Je, S. H.; Kim, H. J.; Kim, J.; Choi, J. W.*; Coskun, A.* "Perfluoroaryl-Elemental Sulfur SNAr Chemistry in Covalent Triazine Frameworks with High Sulfur Contents for Lithium-Sulfur Batteries," Adv. Func. Mater., 201727, 1703947pdf

Organic battery:

  • Kim, D. J.; Jung, Y. H.; Bharathi, K. K.; Je, S. H.; Kim, D. K.*Coskun, A.*, Choi, J. W.* An Aqueous Sodium Ion Hybrid Battery Incorporating Organic Compound and Prussian Blue Derivative,” Adv. Energ. Mater., 2014, 4, 1400133pdf

All Solid-State Battery:

  • Lee, K.; Kim, S.; Park, J.; Park, S. H.; Coskun, A.; Jung, D. S.; Cho, W.*; Choi, J. W.* "Selection of Binder and Solvent for Solution-Processed All-Solid-State Battery," J. Electrochem. Soc., 2017, 164, A2075-A2081.



Please click on the image to enlarge.